If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-18r+65=0
a = 1; b = -18; c = +65;
Δ = b2-4ac
Δ = -182-4·1·65
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-8}{2*1}=\frac{10}{2} =5 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+8}{2*1}=\frac{26}{2} =13 $
| X+x*10/100=110 | | 6y-11=43y= | | (10x-13)+(3x+1)+(2x+16)=180 | | -6a+3=21 | | -11s=- | | 38x=17 | | x+18=83 | | x+81=93 | | x+72=44 | | x+30=69 | | x+61=93 | | x+19=74 | | x+84=43 | | 120x=850 | | x+26=77 | | x-54=9*7 | | x+96=23 | | 23x=74 | | x+91=83 | | 62x+55=68 | | x+97=88 | | x+77=4 | | x+89=74 | | x+70=96 | | x+29=69 | | x+76=64 | | x+60=60 | | 31+25x=7x-14=3x | | x+122+90=180 | | 59+55+2y=180 | | 71+50+x=180 | | 6+3(x+4)=34 |